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Abstract. This paper present a multifractal interpretation of turbulent 

atmospheric entities, considering them a system whose dynamics are manifested 

on continuous yet non-differentiable multifractal curves. By bringing forth 

theoretical considerations regarding multifractal structures through non-

differentiable functions in the form of an adaptation of scale relativity theory, the 

minimal vortex of an instance of turbulent flow is considered. This then leads to 

a general equation for the non-differentiable vortex itself with its component 

velocity fields – all of which are plotted and studied.  
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1. Introduction  

 

Atmospheric physics, as a distant relative to many of the fields of 

mechanics and dynamics, is supported by the fact that the principles of 

determinism apply to it; however, these principles do not have to imply a kind 

of cyclical behaviour in atmosphere dynamics. Considering most analytical 
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considerations towards the atmosphere in general, it appears that predictability 

is a principal attribute of its afferent dynamics. However, once the techniques of 

nonlinear analysis and chaos theory have been developed, it is found that the 

reductionist analysis method, which has formed the basis of our understanding 

of the atmosphere, does not have a large range of applicability and that 

potentially-unlimited predictability cannot be linked the atmosphere; indeed, 

only through simplifying the description of the atmosphere through linear 

analysis can one arrive at unlimited predictability (Badii, 1997; Hou et al., 

2009; Deville and Gatski, 2012). 

First of all, there is no reason not to suppose that this non-linear nature 

of atmospheric phenomena is structural and functional, and various interactions 

between atmospheric entities certainly show connections and conditionings of 

the types macroscopic-microscopic, global-local, collective-individual, and 

many others. In such a theoretical framework, non-differentiable 

implementations for atmospheric dynamics are continuously discussed (Badii, 

1997; Hou et al., 2009; Deville and Gatski, 2012). Non-differentiability implies 

fractality: continuously self-similar structures for which one must employ scale-

dependent laws. Many models used for the description of atmospheric dynamics 

are founded on the hypothesis that variables describing it happen to be 

differentiable (Hou et al., 2009); but, as previously mentioned, integrability and 

differentiability are no longer fully applicable here. These procedures, in 

general, however, cannot function properly when describing nonlinear and 

chaotic processes, which is usually the case in atmospheric phenomena (Deville 

and Gatski, 2012). 

In order to describe atmospheric dynamics in this new manner while 

also using certain differentiable mathematical methods, we have to bring forth 

the notion of scale resolution while expressing these variables and equations 

govern these atmospheric dynamics (Nottale, 2011; Agop and Păun, 2017). This 

then implies that any and all variables that are classically-dependent just on 

spatial and temporal coordinates depend, in a “non-differentiable manner”, on 

the resolution of their respective scales; or, instead of functioning with just one 

variable contained in a non-differentiable function, we shall operate just with 

function approximations found by averaging them on various scale resolutions. 

Thus, all variables that appear in the description of atmospheric dynamics shall 

work as the limit of a “family of mathematical functions”, being non-

differentiable for null-scale resolutions and differentiable in other cases 

(Nottale, 2011; Agop and Păun, 2017). Such a manner of describing 

atmospheric dynamics implies developing a novel formalism and theory 

functional for such structures whose laws of dynamics, invariant to any spatial 

and temporal transformations become integrated with scale laws invariant to the 

transformations of scale resolutions. 



Bul. Inst. Polit. Iaşi, Vol. 66 (70), Nr. 3, 2020                                    79 

 

 

2. Multifractal Model. Results and Discussions 

 

Much of the theory behind the construction and reasoning of the 

associated mathematical and physical formalism can be found in one of our 

recent papers (Roșu et al., 2020); for now, this new structure could be attained 

if one considers that the differential of the spatial coordinate of the atmospheric 

multifractal structure 𝑑±𝑋
𝑖(𝑡,𝑑𝑡)  is expressed as the sum of the two 

differentials. One of them is scale resolution independent, 𝑑±𝑥
𝑖(𝑡), and the 

other one is scale resolution dependent, 𝑑±𝜉
𝑖(𝑡,𝑑𝑡) in the form: 

 

𝑑±𝑋
𝑖 𝑡,𝑑𝑡 = 𝑑±𝑥

𝑖 𝑡 + 𝑑±𝜉
𝑖 𝑡,𝑑𝑡                                           (1) 

 

The “+” sign corresponds to forwards processes of the atmosphere 

dynamics, while the “‒” sign corresponds to backwards ones. Then, it is 

possible to state that the non-differentiable part of the spatial coordinate 

satisfies the multi-fractal equation (Agop and Păun, 2017): 

 

𝑑±𝜉
𝑖 𝑡,𝑑𝑡 = 𝜆𝑖 𝑑𝑡 

 2 𝑓(𝛼)  −1
,𝛼 = 𝛼(𝐷𝐹)                                       (2) 

 

where 𝜆𝑖  are coefficients associated to differential-nondifferential transition, 

𝑓(𝛼) is the singularity spectrum of order 𝛼, and 𝛼 𝑥  is the singularity (Hou et 

al., 2009). The singularity spectrum is defined: 

 

𝑓 𝛼 = 𝐷𝐹 𝑥,𝛼 𝑥 = ℎ                                                       (3) 

 

Of course, judging by the definition of the multifractal itself, the fractal 

dimension alone is not enough to characterize the atmospheric multifractal: this 

is why the previous equation states that the non-differentiable part of the spatial 

coordinate satisfies a relation where a singularity spectrum 𝑓 𝛼  is found. This 

singularity spectrum denotes the dimension not of an entire atmospheric 

multifractal curve necessarily, however it describes a spectrum of dimensions 

that groups of points found in this curve might have, depending on whether or 

not the same Hölder exponent can be used for them. It is implied then, although 

it is not specified necessarily, that the smallest possible atmospheric 

multifractal, the minimal multifractal vortex, will be described by one Hölder 

exponent – then, indeed, 𝑓 𝛼  becomes wholly equivalent to 𝐷𝐹.  

It can be quite difficult to arrive at any analytical solutions for the 

equation system of the velocities described by this theory while considering 

nonlinearity created by non-differentiable convection and non-differentiable 

dissipation (Roșu et al., 2020). However, it is possible to arrive at a solution in 

the case of plane symmetry of the dynamics of our given non-differentiable 



80                                             Alin Iulian Roşu and Marius Mihai Cazacu 
 

 

atmospheric turbulence unit. Thus, we consider the equation system of fractal 

hydrodynamics at a nondiferentiable scale resolution for the stationary case and 

at plane symmetry as:  

 

𝑢𝜕𝑥𝑢 + 𝑣𝜕𝑦𝑢 = 𝜎𝜕𝑦𝑦
2 𝑢                                                  (4) 

 

𝜕𝑥𝑢 + 𝜕𝑦𝑣 = 0                                                           (5) 
 

where: 
 

𝑢 = 𝑢 𝑥,𝑦 , 𝑣 = 𝑣 𝑥,𝑦 ,𝜎 = 𝜆 𝑑𝑡 
 

2

𝑓 𝛼 
 −1

                                  (6) 

 

In the upper relations, 𝑢 and 𝑣 are the components of the wind velocity 

dependent on the scale resolution 𝑑𝑡, 𝜆 is a constant associated with the fractal-

multifractal transition, 𝑓 𝛼  is singularity spectrum of order 𝛼 , and 𝛼  is the 

singularity index of the movement curves of the atmospheric entities. Eq. (4) 

corresponds to the conservation law of the specific impulse at nondiferentiable 

scale resolutions, and Eq. (5) corresponds to the conservation law of state 

density at the nondiferentiable scale resolution (i.e. the incompressibility of the 

atmosphere at these scales). Now by introducing the adimensional variables:  

 

𝜉 =
𝑥

𝑥0
, 𝜂 =

𝑦

𝑦0
,𝑈 =

𝑢

𝑢0
,𝑉 =

𝑣

𝑣0
                                              (7) 

 

With the property that: 

 

𝑢0𝑦0 = 𝑣0𝑥0                                                              (8) 

 

The system in Eqs. (4) and (5) can be rewritten as:  

 

𝑈𝜕𝜉𝑈 + 𝑉𝜕𝜂𝑈 = 𝜈𝜕𝜂𝜂
2 𝑈                                                     (9) 

 

𝜕𝜉𝑈 + 𝜕𝜂𝑉 = 0                                                            (10) 
 

where: 
 

𝜈 =
𝜎

𝜎0
=

𝜎

𝑦0𝑣0
=

𝜎𝑥0

𝑦0
2𝑢0

                                                        (11) 

 

In the previous equations, 𝑥0 and 𝑦0 are specific lengths, 𝑢0 and 𝑣0 are 

specific velocities and 𝜈 is the fractality degree (a measure of the fractality of 

the movement curves of the atmospheric entities), all of these quantifying the 

atmospheric characteristics at nondiferentiable scale resolutions. By adding the 

restrictions: 
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𝑙𝑖𝑚
𝜂→0

𝑉 𝜉, 𝜂 = 0,  𝑙𝑖𝑚
𝜂→0

𝜕𝑈

𝜕𝜂
= 0, 𝑙𝑖𝑚

𝜂→∞
𝑈 𝜉, 𝜂 = 0 ,                     (12a) 

 

𝑞 = 𝑞0  𝑈2𝑑𝜂
+∞

−∞
= 𝑐𝑡. , 𝑞0 = 𝜌

𝑢0
2

𝑦0
                                (12b) 

 
Following the demonstration found in the previously-mentioned paper, 

the velocity field of the atmospheric entities at nondiferentiable scale 

resolutions is given by the relations: 

 

𝑈 =
1.5

 𝜈𝜉  
1
3

𝑠𝑒𝑐ℎ2  
0.5𝜂

 𝜈𝜉  
2
3

                                                      (13) 

 

𝑉 =
1.9

 𝜈𝜉  
1
3

 
𝜂

 𝜈𝜉  
2
3

𝑠𝑒𝑐ℎ2  
0.5𝜂

 𝜈𝜉  
2
3

 − 𝑡𝑎𝑛ℎ  
0.5𝜂

 𝜈𝜉  
2
3

                                    (14) 

 
Thus, the velocity fields of the atmospheric entities at nondiferentiable 

scale resolutions are obtained, and represented in Figs. 1-8. 
 

 
 

Fig. 1 ‒ Normalized velocity field 𝑈 of non-differentiable atmospheric 

 multifractal; ν = 0.5. 
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Fig. 2 ‒ Normalized velocity field 𝑈 of non-differentiable atmospheric 

 multifractal; ν = 1. 
 

 
 

Fig. 3 ‒ Normalized velocity field 𝑈 of non-differentiable atmospheric 

 multifractal; ν = 1.5. 
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Fig. 4 ‒ Normalized velocity field 𝑈 of non-differentiable atmospheric 

 multifractal; ν = 2. 

 

 
 

Fig. 5 ‒ Normalized velocity field 𝑉 of non-differentiable atmospheric 

 multifractal; ν = 0.5. 
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Fig. 6 ‒ Normalized velocity field 𝑉 of non-differentiable atmospheric 

 multifractal; ν = 1. 

 

 
 
Fig. 7 ‒ Normalized velocity field 𝑉 of non-differentiable atmospheric 

 multifractal; ν = 1.5. 
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Fig. 8 ‒ Normalized velocity field 𝑉 of non-differentiable atmospheric 

 multifractal; ν = 2. 

 

 

 

 

Now, through Eqs. (13) and (14), the vortex field at nondiferentiable 

scale resolutions is introduced:  

 

 

𝛺 =  𝜕𝜂𝑈 − 𝜕𝜉𝑉 =
0.57𝜂

 𝜈𝜉 2
+

0.63𝜉

 𝜈𝜉 
4

3

𝑡𝑎𝑛ℎ  
0.5𝜂

 𝜈𝜉 
2

3

 +
1.9𝜂

 𝜈𝜉 2
𝑠𝑒𝑐ℎ2  

0.5𝜂

 𝜈𝜉 
2

3

 − 

 

−
0.57𝜂

 𝜈𝜉  2 𝑡𝑎𝑛ℎ
2  

0.5𝜂

 𝜈𝜉  
2
3

 −  
1.5

𝜈𝜉
+

1.4𝜂

𝜉 𝜈𝜉  
5
3

 𝑠𝑒𝑐ℎ2  
0.5𝜂

 𝜈𝜉  
2
3

 𝑡𝑎𝑛ℎ  
0.5𝜂

 𝜈𝜉  
2
3

                      (15) 

 

 

 

The vortex velocity field and virtual source of turbulence at 

nondiferentiable scale resolutions is shown in Figs. 9-12.  
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Fig. 9 ‒ Normalized vortex Ω of non-differentiable atmospheric 

 multifractal; ν = 0.5. 

 

 
Fig. 10 ‒ Normalized vortex Ω of non-differentiable atmospheric 

 multifractal; ν = 1. 
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Fig. 11 ‒ Normalized vortex Ω of non-differentiable atmospheric 

 multifractal; ν = 1.5. 

 

 
Fig. 12 ‒ Normalized vortex Ω of non-differentiable atmospheric 

 multifractal; ν = 2. 
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Now, in order to quantify the dissipative character of the non-

differentiable vortex, we may employ the following equation (Tatarski, 2016): 
 

𝜀 ≅ 0.353𝑙𝑑
2Ω3                                             (16) 

 

Thus, we can construct the field of the turbulent dissipation rate of the 

nonmanifest vortex (Figs. 13-16). 
 

 
Fig. 13 ‒ Turbulent dissipation field of minimal vortex of the 

 non-differentiable atmospheric multifractal; ν = 0.5. 
 

 
Fig. 14 ‒ Turbulent dissipation field of minimal vortex of the 

 non-differentiable atmospheric multifractal; ν = 1. 



Bul. Inst. Polit. Iaşi, Vol. 66 (70), Nr. 3, 2020                                    89 

 

 

 
Fig. 15 ‒ Turbulent dissipation field of minimal vortex of the 

 non-differentiable atmospheric multifractal; ν = 1.5. 

 

 
Fig. 16 ‒ Turbulent dissipation field of minimal vortex of the 

 non-differentiable atmospheric multifractal; ν = 2. 
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The minimal vortex field becomes manifest and a real source of 

turbulence at diferentiable scale resolutions through coherence, or the 

autostructuring of minimal vortices in vortex streets. Indeed, by considering a 

two-dimensional non-differentiable and non-coherent fluid (which will then 

exhibit fractal-like qualities), its entities, which scale down towards minimal 

vortices, become structured as a vortex lattice of cnoidal stationary modes. 

In terms of the results, the velocity fields of this multifractal minimal 

vortex and its dissipation field have been plotted in Figs. 1-12; the greatest 

velocity shown by the vortex seems to lie in the vicinity of its centre, and, as 

one would expect, turbulent dissipation is also strongest near the centre. 

Surprisingly, this structure shows a “downward-spiral” motion, where the 

maximum and minimum values are in the vicinity of each other, and the 

trajectory from one to the other appears to be the shortest right along the x-axis 

towards 0. We might interpret this to mean that it points to the way in which the 

vortex dissipates and the flow progresses; an “innate directionality” to the 

structure of these vortices regarding their velocity fields may give rise to small 

vortex-local gradients of fluid density for each of the vortices, which, if aligned, 

may produce vortex streets and lattices. Increasing our non-dimensional 

parameter 𝜈 shall produce a decidedly-smaller  vortex minimum and a “less 

acute” dissipation field (slightly larger in proportion to the others, with smaller 

values) (Figs. 13-16), however, by increasing the parameter, we arrive at 

velocity fields that give a “sharper” maximal and a more spread-out minimal 

region in rotation. In any case, we have assumed that these simulated 

phenomena take place in calm ground-level conditions for a normal atmosphere. 

 

3. Conclusion 

 

In this article, the non-linear behavior and functionality of the 

atmosphere has been placed under a multifractal approach, by supposing that 

turbulent atmospheric flow can be likened to a complex system where both the 

functional and structural units exhibit dynamics on continuous yet non-

differentiable trajectories. We have named this system the “atmospheric 

multifractal”, and by formulating a multifractal interpretation, an analytic 

solution for planar symmetry for the velocity fields of the system has been 

obtained. The rotor of these newly-obtained normalized velocity fields is found 

to be a generalized multifractal vortex. Multiple instances of a non-dimensional 

parameter is used to represent the velocity fields and the vortex; this parameter 

is linked to their fractal dimensions, and the plotted results are then shown and 

discussed in relation to this connection.  
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CONTRIBUȚII ADUSE UNUI MODEL MULTIFRACTAL 

 AL TURBULENȚEI ATMOSFERICE 
 

(Rezumat) 
 

Acest articol prezintă o interpretare multifractală a entităților turbulenței 

atmosferice, considerându-le un sistem al cărui dinamici se manifestă pe curbe 

multifractale nediferențiabile, dar continue. Aducând considerații teoretice în legătură 

cu structuri multifractale prin funcții nediferențiabile sub forma unei adaptări a teoriei 

relativității de scară, se specifică vortexul minimal al unei instanțe de curgere 

turbulentă. Astfel se ajunge la o ecuație generală a vortexului nediferențiabil, compus 

din câmpurile de viteză aferente, care sunt analizate grafic pentru diverse grade de 

fractalitate.  
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